Category Archives: Uncategorized

Slotless Motors For Underwater Applications

With nearly 70% of Earth’s surface covered in water, demand for subsea technologies is rapidly growing—expected to surpass $10 billion by the 2030s. From manned submersibles to ROVs and UUVs, all these systems require smooth, reliable motion. ThinGap’s high-efficiency, zero-cogging slotless motor kits are engineered to meet those demands.

ThinGap’s slotless brushless DC motors are increasingly being used in direct-drive underwater thrusters. Thanks to a high torque-to-diameter ratio, they eliminate the need for gearboxes—reducing complexity and failure points while saving weight. This makes them ideal for compact, high-reliability applications in both commercial and defense settings.

ThinGap’s LS Series motor kits are especially well-suited to these conditions. Their lightweight, ironless stator architecture enables passive cooling using ambient seawater, and the low drag design minimizes resistance in liquid environments. The ring-shaped geometry also allows for flexible propulsion configurations—either with an impeller integrated inside the rotor or a propeller mounted externally.

Backed by over two decades of engineering expertise, ThinGap’s LS and TG Series motor kits are already deployed in a variety of marine systems. With outer diameters ranging from 25 mm to 393 mm and customizable features to suit depth, material, and performance requirements, these motor kits can be tailored to meet the rigorous demands of underwater applications.

Renewable Energy Innovations, Generated by ThinGap

With the growing urgency for sustainable energy, pioneers are innovating new ways to harness the power of ocean waves.  Southern California based Ocean Motion Technologies is one of those pioneers. The company is developing a zero-emission energy solution using ThinGap’s motor technology in its generator mode.

Ocean Motion’s R&D is focused on sustainable, scalable, and more efficient marine hydrokinetic energy by focusing on small-scale applications like scientific & maritime buoys and moorings, offshore aquaculture, and coastal security and defense. Up until now, oceanic buoys have been powered by solar panels, which have a high cost of maintenance. Ocean wave energy is a natural choice for these use cases, but most wave energy devices are not designed for small-scale applications, as they can only function within a narrow range of sea states.

Leveraging SBIR Grants from the U.S. Department of Energy and National Science Foundation, Ocean Motion Tech has designed a wave generating prototype leveraging ThinGap’s TGD-108 (image). Originally designed and optimized for an aerospace application, the TGD-108 is available as a framed assembly with 1.4 kW of continuous power output while weighing only 670 grams or just less than 1.5 lbs.

With the adage that good motors make good generators, ThinGap’s technology is a logical choice for renewable energy applications that require overall system efficiencies. ThinGap’s unique scalable motor architecture and design offer efficiency up to 95%, and largely eliminates internal magnetic losses. The low impedance stator typical in ThinGap designs provides a stable, pure 3-phase sinusoidal, low-droop, with less than 1% harmonic distortion voltage output of clean, conditioned power.

Ocean Motion’s solution for powering data buoys is an adaptive wave energy device, with the ability to scale the technology up, and networking them together for oceanographic monitoring. The primary reason for pursuing marine power generation is due to the inherent energy density of ocean waves, which concentrates solar and wind energy and thus offering far greater energy potential in comparison.

With more than two decades of experience in the design and production of slotless motor kits, ThinGap salutes the novel efforts of customers like Ocean Motion Tech.  Ongoing and future projects designed to combine proven technology in an applied fashion are at the heart of innovative solutions like the ones being actively demonstrated in the Pacific Ocean.

Slotless Motors For Precision Haptic Feedback

What do Surgeons and Pilots have in common?  Besides holding incredibly important jobs, they rely on precision control systems to be highly effective.

ThinGap’s frameless architecture and smooth, cogless motion make it ideal for force-sensing applications, from flight simulators to surgical robotics. Haptic systems rely on accurate torque feedback, free from mechanical disturbances, to enhance human control.

The TG Series motor kits deliver true force feedback without disruptions, thanks to their ironless design that eliminates hysteretic drag. With near-zero Eddy-current, low hysteresis, and harmonic distortion under 1%, torque output remains directly proportional to current. These features make the TG Series a trusted choice for haptic feedback in surgical robotics and flight simulators.

Modern surgical robotics demand precise, disturbance-free movement for optimal patient care. Zero-cogging motor kits enable accurate haptic feedback and precision actuation. ThinGap’s collaboration with a leading surgical robotics manufacturer underscores its ability to deliver motors tailored to medical industry standards.

Beyond medical use, ThinGap’s motors support aerospace and motorsports simulators, delivering the force sensing needed for immersive training. With near-zero Eddy-current, low hysteresis, and minimal harmonic distortion, ThinGap ensures smooth, reliable motion across various industries.

Slotless Motors For Air Bearing Spindles

High-precision industrial spindles, such as those used in rotary stages, are crucial for applications requiring absolute precision, including semiconductor wafer processing, imaging, and inspection. Beyond the semiconductor industry, air bearing spindles are also vital in optics production, scientific research, and even automobile painting.

Air bearings, also known as fluid film bearings, utilize pressurized air to reduce friction, similar to how liquid or mechanical lubricants work. The compressed air acts as a cushion between the spindle’s rotor and stator, as well as providing stiffness, enabling highly reliable high-speed and precise movement. The complexity of predicting the performance of air bearings is rooted in nonlinear differential equations, but the benefit is seen by minimizing moving parts and wear resulting in enhance reliability. One critical design/integration aspect of air bearing spindles is the high degree of precision gained when paired with slotless motors.

Low-profile, large through hole BLDC motors are particularly suitable for spindle applications due to their large internal aperture, which accommodates optics, cabling, or prisms, while remaining compact enough for deep system integration. Another benefit of using traditional slotless or ironless stator slotless motors for air bearing spindles is architectural, due to the reduced, or in some cases, elimination of attractive forces between the rotor and stator. The lack of a stator iron enables a thinner, lighter weight, and ultimately more mass efficient spindle, saving both volume and mass.  Finally, the lack of cogging inherent in slotless motors provides a smooth rotational output and avoids even the smallest disturbance torques that can translate to the workpiece.

ThinGap’s TG Series of slotless BLDC motor kits are ideal for high-speed air bearing spindle applications due to the lack of iron in the stator, leading to zero radial and axial forces between the rotor and stator. The slotless, ironless stator delivers smooth, zero-cogging motion, making these motors perfect for spindle use. The TG Series has the added benefit of zero hysteretic and Eddy Current drag, ensuring true bidirectional repeatability in both angular and vertical movements, while also making it exceptionally efficient at high speeds. Lastly, the TG Series ironless stators boast harmonic distortion below 1%, and provide a linear current to torque output throughout the entire torque range (up to the peak torque limit) reducing servo induced disturbance and ultimately improving torque, and velocity control.

ThinGap’s TG Series of slotless motor kits stands out as an industry leader for air bearing spindle applications. With standard kits ranging from 29 to 190 mm in outer diameter and continuous torque outputs from 0.14 to 9.46 N-m, these motors are always cogless, low-profile, large through hole, and high in power density. Available in standard and modified configurations, ThinGap’s TG Series is the optimal choice for air bearing spindle motors.

ThinGap, Xiomas, and the Future of Aerial Fire Monitoring

The increased frequency of massive wildfires, capable of inflicting billions of dollars in damages annually, demands enhanced technology to combat the threat. The innovators at Xiomas Technologies, headquartered in Ann Arbor, Michigan, strive to empower humanity in the battle against these catastrophic forces with cutting-edge systems and advanced imaging technology.

Xiomas is developing advanced high-resolution imaging instruments that will help map wildfires in greater detail to aid firefighters with coordination and safety when battling these large fires. Current wildfire imaging technology captures fire data in infrared wavelengths to map the ground temperatures and cut through the smoke, and typically operate at altitudes around 10,000 feet, which only gives a 6 mile wide field of view for each pass, which represents a limiting factor.

Xiomas’s Thermal Mapping and Measurement Sensor (TMMS) is the latest evolution of their high altitude fire mapping sensor. Designed to operate at around 40,000 feet, the Xiomas sensor captures a 16 mile wide path, resulting in triple the ground coverage in a single pass and without compromising critical resolution and data collection.

Despite operating at much higher altitudes than contemporary infrared sensors, TMMS can create an image with the same ground resolution as current technology by creating a mosaic of many smaller images and patching them together in software to create a much larger image. Xiomas’ goal is to create a more efficient airborne sensor to reduce operation costs, decrease flight time, and increase coverage to better help firefighters on the ground.

Xiomas’ technology has attracted the attention of NASA, who have funded the development and testing of a few generations of thermal mapping instruments, the WAI (Wide Area Imager), TMAS (Thermal Mapping Airborne Simulator), TBIRD (Three Band IR Detector), and now the TMMS sensors. Set to begin testing by NASA in Fall 2024 aboard their ER-2 High-Altitude Airborne Science Aircraft derived from the famous U-2 spy plane, Xiomas is hoping to expand the TMMS sensor to be integrated into satellites in the next few years.

The ThinGap-designed turnkey assembly integrates one of its slotless motor with an optical encoder and bearing set into a precision aluminum housing.

At the heart of the Xiomas’s TMMS is the Across-Track Scanner, which is built around a custom motor assembly and ThinGap’s OTS LSI 75-12 Brushless DC motor. The ThinGap engineered assembly is based on a cog-free, low profile “slotless” motor integrated into a precision-machined aluminum housing, with a high resolution optical encoder, pre-loaded bearing set, and paired with a high-PWM, low-inductance controller, all of which drives a lightweight scan mirror.

The TMMS sensor has a 110 degree field of view, enabled by each 5.85 degree movement of the scan mirror, which triggers the camera to take an image. The ability to deliver a framed assembly (link to modified/custom page) based off an off-the-shelf motor kit with is another example of ThinGap’s ability to deliver an optimized, yet cost and budget effective turnkey motor assembly for rapid customer integration.

Many members of ThinGap’s team have been directly affected by the wind-driven brushfires that Southern California is famous for, so the ability to directly contribute to community safety is a matter of pride.

To learn more about Xiomas Technologies, please visit their website.

ThinGap’s Capabilities and Credentials

ThinGap stands atop a proud 25-year history supporting customers in aerospace and other precision industries. The ability to serve such a diverse customer base is due to ThinGap’s heritage and unique capabilities as an organization. In May of 2022, it became part of the greater Allient organization (formerly named Allied Motion).

Since 1999, ThinGap has developed hundreds of motor designs, and shipped thousands of motors to customers ranging from NASA to Fortune 500 companies, and even top Formula 1 teams. One of the key enabling factors is the close integration of production, engineering, and operations within a single location.

ThinGap’s ability to rapidly react to customer needs is reflected in sample quantity products often shipping within a week or less, with a ramp to production volumes in 3-4 months. Additionally, preliminary custom electro-magnetic designs and space-claim CAD models are available in 48 hours, with first deliveries often happening in 9-12 months from project kickoff. Because of ThinGap’s advanced analytical modelling, final designs are promised to be within 95% of predicted performance. Well defined production processes, 3D-printed tooling, refined modeling, and analytical tools all contribute to the ability to quickly support customers in a fast paced marketplace.

ThinGap has the capability to take any off-the-shelf motor kit and modify it to the customer’s exact requirements for both its LS and TG Series, such as winding changes, or environmental conditions like space-rating or submergible applications. Modified and custom motor designs address the need for very specific performance specifications, operational requirements, cost optimized solutions, and unique form factors that may be required for a given project.

Additionally, ThinGap has the in-house capability to design and manufacture framed or housed motor assemblies as a pre-integrated solution. Housed and framed assemblies enable more cost-effective, turnkey solutions desired by programs with tight schedules which need to be able to rapidly integrate a motor into a system.

To learn more about ThinGap’s capabilities, please reach out for further information.

Zero-Cogging Slotless Motors For Medical Robotics

While a majority of ThinGap’s motor kits are destined for airborne or spaceborne applications, the same attributes that help serve aerospace customers also are desirable for many medical applications. Smooth, zero-cogging, high precision motor kits, such as ThinGap’s are ideal for not only surgical robotics, but diagnostic and imaging equipment as well.

Modern surgical robotics systems require precise, exacting movement with no chance for mechanical disturbances to ensure the highest level of patient care. Zero-cogging motor kits are the ideal solution for true and accurate operator haptic feedback, as well as precision actuation. ThinGap’s TG Series motor kits have been used for haptic feedback for a surgical robotic system, due to the lack of both hysteretic drag afforded by the ironless motor architecture, enabling true force feedback without any disruptions.

ThinGap’s LS Series has seen integration in high-precision robotics due to the motor architecture’s extremely smooth, highly precise motion. Additionally, low profile motion solutions with a large internal aperture are desired for the ability to route optics or cabling through the center as part of deep system integration.

ThinGap’s motor kits have near zero Eddy-current, low or zero hysteretic drag, and a harmonic distortion of less than 1%, so torque output is directly proportional to current throughout the operating range, as well as providing smooth, zero-cogging motion. Additionally, ThinGap has maintained a long-standing relationship with a leading surgical robotics manufacturer supplying motors, and regularly works with other medical industry OEMs to produce tailor-made solutions that meet regulatory approval.

NASA Makes First Images and Data From PACE Public

In recognition of Earth Day, ThinGap is excited to share NASA’s public release of data from the recent PACE Mission.

Image Credit: NASA

Launched in February, PACE is a mission to study the Earth’s oceans and atmosphere, and marks the first time ThinGap motors have received NASA flight certification. ThinGap supplied its LS Series motors that drive the satellite’s main instrument, the Ocean Color Instrument (OCI).

Read the full blog here

 

 

Everything To Know About PACE, ThinGap’s First NASA Mission

Scheduled to launch early in the morning on February 6, 2024 from Kennedy Space Center aboard a SpaceX Falcon 9 rocket, the PACE Mission marks the first time ThinGap has achieved flight certification by NASA. PACE is a NASA mission that ThinGap has been proud to support. Developed and produced by NASA Goddard Space Flight Center in Maryland, PACE is a planned decade-long mission to study the Earth’s oceans and atmosphere.

The PACE launch is scheduled for 1:35 a.m. EST.  In attendance to witness the historic event firsthand will be representatives from ThinGap’s management and engineering teams.  In 2021, ThinGap supplied custom made LS Series motor kits to the development team at NASA Goddard.  These motors were designed to be integrated into the PACE Mission’s Ocean Color Instrument or OCI sensor payload.

The goal of the PACE mission is the monitoring of worldwide oceanic health through observation of the color of the ocean’s surface, as well as how reflected sunlight interacts with the atmosphere. The color of surface water is heavily influenced by sunlight’s interaction with chlorophyll, a green pigment found in plants as well as the phytoplankton that inhabit the ocean. Designed and built by NASA Goddard, the heart of the OCI (Ocean Color Instrument) is an advanced hyperspectral optical spectrometer, capable of measuring the color of the ocean from ultraviolet, through visible color, to short-wave infrared wavelengths. Previous NASA satellites have been limited to studying a small portion of this spectrum, so a single instrument being able to capture more data than before is a huge benefit to researchers. ThinGap supplied custom LS Series motors to NASA in 2021 that drive the continuously rotating cross-track telescope.

The two other payloads aboard PACE are polarimeters intended to measure how sunlight reflected by the Earth’s surface interacts with clouds, aerosols, and the ocean surface. The first is SPEXone, designed and built by a Dutch team including Airbus Defense & Space, Netherlands Institute for Space Research, and supported by the Netherlands Organization for Applied Scientific Research is designed to characterize particles suspended in the atmosphere by chemical composition and their impacts on climate change.

The other polarimeter aboard PACE, designed and built by University of Maryland Baltimore County’s Earth and Space Institute is HARP2 (Hyper-Angular Rainbow Polarimeter) sensor. HARP2 is a wide-angle imaging polarimeter designed to measure the properties of atmospheric particles, including their size, distribution, shape, and density. Previous HARP instruments have been flown on both airborne platforms as well as CubeSats, which helped influence the design of HARP2.

ThinGap is honored to support this mission by supplying custom motors, as well as achieving flight certification. Additionally, ThinGap has supplied more than 2,500 motor kits in support of a major commercial constellation, as well as US Space Force projects for prime customers.

Zero-Cogging Motors For Precision Underwater Applications

Seventy percent of the Earth’s surface is covered in water. Whether for defense, industry or exploration, the demand of underwater systems, such as manned submersibles, Remotely Operated Vehicles (ROVs), and Unmanned Underwater Vehicles (UUVs) is a market that is expected to grow to more than $10 billion by the 2030s, according to Emergen Research.  These underwater platforms of all forms stand to leverage the benefits of ThinGap’s high efficiency motor kits. With critical functions such as robotic actuation and quiet, yet highly efficient propulsion, ThinGap’s motors continue to find a home in marine and subsea applications.

An emerging use for ThinGap’s brushless DC motors is marine propulsion. ThinGap motors are ideal for underwater direct drive thrusters because of a high torque-to-diameter ratio. ThinGap recently delivered a floodable motor assembly based off its LS Series to a defense customer for a UUV application. With no gearbox, there are no drivetrain losses, enabling lower assembly weight, increased torque, and greater reliability.

As a flooded motor, ThinGap’s stator has the added benefit of inherent cooling from the cold seawater.  In addition, the thin profile of the slotless stator architecture provides less fluid resistance than more traditional actuators.  Mechanically speaking, the ring architecture allows propulsion to be directly outside of the rotor (propeller), or inside (impeller). High motor efficiency, low-noise underwater thrusters are ideal for the fast growing ROV, UUV, and AUV market segments.

With more than two decades of experience in the design and production of slotless motor kits, ThinGap leverages its proven designs to deliver engineered solutions to support both commercial and defense applications underwater. With standard products ranging in size from 25 mm to 393 mm in outer diameter, ThinGap’s highly scalable motor technology can be modified to fit any environmental requirement.